АННОТАЦИЯ ДИСЦИПЛИНЫ

«Теория горения ракетных топлив»

Дисциплина «Теория горения ракетных топлив» является частью программы магистратуры «Аэродинамика, гидродинамика и процессы теплообмена двигателей летательных аппаратов» по направлению «24.04.05 Двигатели летательных аппаратов».

Цели и задачи дисциплины

Целью дисциплины является формирование профессиональных компетенций, связанных с разработкой камеры сгорания двигателя летательного аппарата и оптимизацией протекающих в ней процессов горения топлив; формирование научно-технического мировоззрения на основе знания особенностей сложных технических систем; воспитание навыков технической культуры. Задачи дисциплины: - изучение основ теории горения; - изучение особенностей процессов горения ракетных топлив; - формирование навыков расчёта камеры сгорания двигателей летательных аппаратов; - овладение методологией проектирования камеры сгорания двигателей летательных аппаратов..

Изучаемые объекты дисциплины

- ракетные топлива; - термодинамика горения ракетных топлив; - основные процессы горения ракетных топлив: смесеобразование, воспламенение, горение, распространение пламени; - методология проектирования и расчёта камер сгорания ДЛА..

Объем и виды учебной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 3
1. Проведение учебных занятий (включая проведение текущего контроля успеваемости) в форме: 1.1. Контактная аудиторная работа, из них:	72	72
- лекции (Л)	32	32
- лабораторные работы (ЛР)	18	18
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	18	18
- контроль самостоятельной работы (КСР)	4	4
- контрольная работа		
1.2. Самостоятельная работа студентов (СРС)	108	108
2. Промежуточная аттестация		
Экзамен		
Дифференцированный зачет	9	9
Зачет		
Курсовой проект (КП)		
Курсовая работа (КР)		
Общая трудоемкость дисциплины	180	180

Краткое содержание дисциплины

Наименование разделов дисциплины с кратким содержанием				Объем
	Объем аудиторных			внеаудиторных
	занятий по видам в часах			занятий по видам
				в часах
	Л	ЛР	П3	CPC
3-й семестр				

Теория горения жидких ракетных топлив Введение. История развития теории горения. Связь теории горения с другими дисциплинами. Основные задачи теории горения ракетных топлив. Тема 1. Классификация и характеристика жидких ракетных топлив Основные понятия: компоненты, одно-, двух-, трехкомпонентные топлива; горючие, окислители. Топлива основные, пусковые, вспомогательные; самовоспламеняющиеся и несамовоспламеняющиеся. Высококипящие и низкокипящие (криогенные) компоненты топлива. Топлива длительного и кратковременного хранения. Физико-химические свойства компонентов: химическая формула, плотность, температуры плавления и кипения; критические температура и давление; теплота испарения, энтальпия образования; теплоёмкость, теплопроводность, взяжость; токсичность. Энергетические характеристики: теплота сгорания (разложения для однокомпонентных топлив), удельный импульс (массовый и объёмный). Стехиометрическое соотношение компонентов топлива, коэффициент избытка окислителя, бедная и богатая смесь компонентов. Тема 2. Термодинамика горения Термодинамические характеристики: температура, давление, химический состав продуктов сгорания. Модель термодинамических процессов. Гомогенная и гетерогенная смесь. Термическая диссоциация и ионизация продуктов сгорания. Химическое и фазовое равновесные и замороженные параметры продуктов сгорания. Термодинамический расчёт. Исходные данные для расчёта: элементный состав топлива (условная формула топлива или его компонентов), энтальпия компонентов топлива.	цам в часах занятий по в	Объем внеаудиторных занятий по видам в часах
Въедение. История развития теории горения. Связь теории горения с другими дисциплинами. Основные задачи теории горения ракетных топлив. Тема 1. Классификация и характеристика жидких ракетных топлив Основные понятия: компоненты, одно-, двух-, трехкомпонентные топлива; горючие, окислители. Топлива основные, пусковые, вспомогательные; самовоспламеняющиеся и несамовоспламеняющиеся. Высококипящие и низкокипящие (криогенные) компоненты топлива. Топлива длительного и кратковременного хранения. Физико-химические свойства компонентов: химическая формула, плотность, температуры плавления и кипения; критические температуры плавления; теплота испарения, энтальпия образования; теплота оспарения, энтальпия образования; теплота сгорания (разложения для однокомпонентных топлив), удельный импульс (массовый и объёмный). Стехиометрическое соотношение компонентов топлива, коэффициент избытка окислителя, бедная и богатая смесь компонентов. Тема 2. Термодинамика горения Термодинамические характеристики: температура, давление, химический состав продуктов сгорания. Модель термодинамических процессов. Гомогенная и гетерогенная смесь. Термическая диссоциация и ионизация продуктов сгорания. Химическое и фазовое равновесные параметры продуктов сгорания. Термодинамический расчёт. Исходные данные для расчёта: элементный состав топлива (условная формула топлива или его компонентов), энтальпия компонентов топлива.	ПЗ СРС	
История развития теории горения. Связь теории горения с другими дисциплинами. Основные задачи теории горения ракетных топлив. Тема 1. Классификация и характеристика жидких ракетных топлив Основные понятия: компоненты, одно-, двух-, трехкомпонентные топлива; горючие, окислители. Топлива основные, пусковые, вспомогательные; самовоспламеняющиеся и несамовоспламеняющиеся. Высококипящие и низкокипящие (криогенные) компоненты топлива. Топлива длительного и кратковременного хранения. Физико-химические свойства компонентов: химическая формула, плотность, температуры плавления и кипения; критические температуры плавления и кипения; критические температуры и давление; теплота испарения, энтальпия образования; теплоёмкость, теплопроводность, вязкость; токсичность. Энергетические характеристики: теплота сгорания (разложения для однокомпонентных топлив), удельный импульс (массовый и объёмный). Стехиометрическое соотношение компонентов топлива, коэффициент избытка окислителя, бедная и богатая смесь компонентов. Тема 2. Термодинамика горения Термодинамические характеристики: температура, давление, химический состав продуктов сгорания. Модель термодинамических процессов. Гомогенная и гетерогенная смесь. Термическая диссоциация и ионизация продуктов сгорания. Химическое и фазовое равновесие. Равновесные и замороженные параметры продуктов сгорания. Термодинамический расчёт. Исходные данные для расчёта: элементный состав топлива (условная формула топлива или ето компонентов), энтальпия компонентов топлива.	9 54	
Методы термодинамического расчёта. Анализ результатов. Тема 3. Смесеобразование Общие сведения о смесеобразовании. Ввод, распределение, распыление, смешение		

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах			Объем внеаудиторных занятий по видам в часах
	Л	ЛР	ПЗ	CPC
компонентов топлива. Форсунки: жидкостные,				
газовые и газо-жидкостные; струйные,				
центробежные и струйно-центробежные; одно-				
и двухкомпонентные. Характеристики				
распыления жидких компонентов топлива:				
тонкость (мелкость) и однородность распыла;				
спектр распыла, средние, медианные и				
максимальные размеры капель. Факел распыла,				
его форма и дальнобойность. Эпюра				
расходонапряжённости форсунки. Струйные				
форсунки. Коэффициент расхода, угол распыла.				
Центробежные форсунки. Коэффициент				
расхода, угол распыла. Геометрические				
характеристики форсунки.				
Тема 4. Физика и химия горения				
Горючая смесь. Воспламенение горючей смеси.				
Параметры воспламенения: температура				
воспламенения, период (время) задержки				
(период индукции) воспламенения,				
концентрационные пределы воспламенения.				
Скорость химической реакции. Закон				
Аррениуса. Условие самовоспламенения				
горючей смеси (условие Семёнова).				
Вынужденное воспламенение (зажигание)				
горючей смеси. Границы (пределы)				
воспламенения. Самовоспламенение				
компонентов пусковых топлив.				
Электроискровое и факельное зажигание. Горение горючей смеси. Гомогенное и				
гетерогенное горение. Диффузионное				
квазигетерогенное горение (диффузионное				
горение капель жидкого горючего в				
газообразном окислителе).				
Тема 5. Распространение пламени				
Развитие процесса горения, пламя. Типы				
пламён: ламинарное, ламинарное				
диффузионное, турбулентное; пламя при				
горении капли (взвеси) жидкого горючего в				
окислительном газе. Процесс ламинарного				
распространения пламени. Скорость				
распространения пламени. Видимая и				
нормальная скорость пламени. Фронт пламени.				
Структура фронта пламени. Зависимость				
нормальной скорости от параметров горючей				
смеси. Турбулентное горение. Распространение				
пламени в турбулентном потоке. Турбулентный				
перенос тепла и вещества. Турбулентный				
фронт				
	<u> </u>	L	1	1

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах			Объем внеаудиторных занятий по видам в часах
	Л	ЛР	ПЗ	CPC
пламени и скорость его распространения.				
Параметры турбулентности потока смеси:				
средняя и пульсационная скорости, степень				
(интенсивность) турбулентности (число				
Кармана); эйлеров и лагранжев масштаб				
турбулентности; время турбулентного				
смешения. Мелкомасштабная и				
крупномасштабная турбулентность. Два				
механизма турбулентного горения, связанные с				
масштабом турбулентности. Стабилизация				
пламени. Рециркуляционные потоки. Зона				
обратных токов.				
Теория горения твёрдых ракетных топлив	16	9	9	54
Тема 6. Классификация и характеристика				
твёрдых ракетных топлив				
Основные понятия: заряд твёрдого ракетного				
топлива, поверхность горения, бронирующее				
покрытие; гомогенные (двухосновные) и				
гетерогенные (смесевые) твёрдые ракетные				
топлива. Энергетические характеристики:				
теплота сгорания, удельный импульс (массовый и объёмный). Физико-химические и физико-				
механические свойства: химический состав,				
коэффициент теплопроводности, плотность,				
эластичность, предел прочности, относительное				
удлинение и модуль упругости.				
Внутрибаллистические характеристики:				
скорость горения, её зависимость от давления и				
начальной температуры топлива.				
Двухосновные топлива (баллиститы и кордиты)				
– твёрдые растворы органических веществ.				
Основной состав: нитроцеллюлоза (коллоид) и				
нитроглицерин (растворитель). Добавки:				
пластификаторы, стабилизаторы, катализаторы.				
Смесевые топлива – механическая смесь				
кристаллического окислителя и полимерного				
горючего-связующего. Смесевые				
металлизированные топлива: добавки –				
мелкодисперсные металлические порошки				
(алюминий, магний, бор и их сплавы).				
Тема 7. Процессы горения твёрдых ракетных				
топлив Механизм стационарного горения. Схема				
горения: волна горения, зоны горения (нагрев в				
ran 1				
твёрдой фазе, физико-химические превращения в твёрдой фазе, парогазокапельная, зона газофазных реакций,				

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах			Объем внеаудиторных занятий по видам в часах
	Л	ЛР	ПЗ	CPC
светящееся пламя). Законы скорости стационарного горения. Зависимость скорости горения от основных факторов: влияние давления (степенной закон, показатель степени), влияние начальной температуры топлива. Условие стационарного горения. Эрозионное горение. Методы регулирования скорости горения. Металлосодержащие смесевые топлива. Процесс агломерации. Горение частиц металлов в камере сгорания.				
ИТОГО по 3-му семестру	32	18	18	108
ИТОГО по дисциплине	32	18	18	108